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Figure 1: High-resolution face animation from source (left top) to target (right top).

ABSTRACT
The style-based generator architectures (e.g. StyleGAN v1, v2)
largely promote the controllability and explainability of Generative
Adversarial Networks (GANs). Many researchers have applied the
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pretrained style-based generators to image manipulation and video
editing by exploring the correlation between linear interpolation
in the latent space and semantic transformation in the synthesized
image manifold. However, most previous studies focused on manip-
ulating separate discrete attributes, which is insufficient to animate
a still image to generate videos with complex and diverse poses
and expressions. In this work, we devise a dual distillation strategy
(D2Animator) for generating animated high-resolution face videos
conditioned on identities and poses from different images. Specifi-
cally, we first introduce a Clustering-based Distiller (CluDistiller)
to distill diverse interpolation directions in the latent space, and
synthesize identity-consistent faces with various poses and expres-
sions, such as blinking, frowning, looking up/down, etc. Then we
propose an Augmentation-based Distiller (AugDistiller) that learns
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to encode arbitrary face deformation into a combination of interpo-
lation directions via training on augmentation samples synthesized
by CluDistiller. Through assembling the two distillation methods,
D2Animator can generate high-resolution face animation videos
without training on video sequences. Extensive experiments on
self-driving, cross-identity and sequence-driving tasks demonstrate
the superiority of the proposed D2Animator over existing Style-
GAN manipulation and face animation methods in both generation
quality and animation fidelity.

CCS CONCEPTS
• Computing methodologies → Image manipulation.
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1 INTRODUCTION
Face animation technology aims to reenact a given portrait (i.e.
source image) to different poses and expressions provided by targets
while preserving the identity. By applying a sequence of frames
as targets, videos of imitative motions can be generated. Seeing as
such technology has a wide application prospect in teleconference,
movie industry and artistic creation, plenty of works have been
done to enhance the performance of face animation [61, 40, 49, 54,
14, 48, 70, 59, 70].

Traditional face animation methods [6, 5, 16] usually modify the
source image by warping pixels, where the transforming of head
pose and the hallucination of unseen parts are unachievable. With
the great progress of deep learning [30, 17, 68, 23, 67, 22, 73, 21],
generation-based methods [61, 71, 49, 59, 64, 18, 14, 70] attempt to
synthesize a new image conditioned on the identity of the source
and the pose extracted from the target frames instead of warping.
The generation-based methods learn to model the face appearance
implicitly via large-scale training on video sequences, therefore can
handle more drastic deformation during inference. However, the
training of generative models requires abundant video sequences
and computing resources. Collecting and storing high-resolution
videos are not only expensive but also risk the infringement of
portrait rights. Not to mention the consumption of computing
resources rises exponentially with video resolution. Therefore, most
generation-based models suffer from low resolution and reality.

Recently, the style-based generator architectures (e.g. StyleGANs)
[28, 29] made a breakthrough in unconditional image generation.
They can synthesize realistic images of resolution up to 1024×1024.
Moreover, some papers utilize pretrained StyleGANs to realize face
manipulation through exploring the correlation between linear
interpolation in the latent space and semantic transformation in
the synthesized image manifold. However, most previous methods
manipulate discrete attributes (e.g. smile or not) and can barely ac-
complish high-resolution video generation with complex motions.

In this work, we propose a dual distillation strategy (D2Animator)
that can generate high-resolution face animation videos with a
pretrained StyleGAN while needing no extra training on videos.
D2Animator consists of a Clustering-based distiller (CluDistiller)
and an Augmentation-based distiller (AugDistiller). In the CluDis-
tiller phase, we distill the latent space by clustering the synthetic
images, and the distillation contributes to discovering the interpola-
tion directions that are in control of facial actions. Unlike previous
latent space analysis methods, CluDistiller can search for the di-
rection which controls specific facial parts, and then collecting a
comprehensive set of directions that correspond to various facial
actions. Then the AugDistiller learns to encode arbitrary facial ac-
tions into the combination of interpolation directions via training
on augmentation samples synthesized by CluDistiller. Different
from the previous face animation methods, the AugDistiller models
the facial actions by distilling a pretrained image generator instead
of training on additional video sequences. Through assembling the
proposed two distillers, D2Animator can generate high-resolution
videos of face animation. In summary, the contributions of this
work are as follows:
•We introduce a Clustering-based distillation module (CluDistiller)
to find a comprehensive set of interpolation directions that controls
diverse facial actions. The interpolation directions can be used for
both flexible face manipulation and data augmentation.
• We present an Augmentation-based distillation module (AugDis-
tiller) to learn facial actions from a pretrained image generator
instead of video sequences.
• The proposed D2Animator can be a new paradigm of applying a
pretrained GAN in downstream tasks by employing a generator as
a neural renderer and a data producer simultaneously.
• Experiments show that the proposed D2Animator outperforms
the previous start-of-the-art face animation methods in qualitative
and quantitative, especially for high-resolution portrait animation.

2 RELATEDWORK
Portrait Animation. Most previous works deal with portrait ani-
mation following conditional generation methods [58, 57, 56] where
the generated frames are conditioned on the identity of the source
image and the poses of the target frames. A few-shot method [71]
uses the landmark image of the target frame as the input and in-
jects the identity of the source by AdaIN [24] during the feed-
forward process. FSGAN [40] warps the source face following a
query Euler angle of target frames, and inpaints the warped face us-
ing Pix2PixHD network [58]. Some face swapping methods can also
be considered portrait animation. FaceShifter [35] takes the identity
feature of the source as input and injects the attribute features of
the target frame to generate the face swapping result. In contrast,
the input of SimSwap [9] is the target image, and the identity is con-
trolled by AdaIN [24] blocks in the middle of the network. Besides
AdaIN [24], SPADE [41] is another efficient condition controlling
approach. For example, HeadGAN [14] and PuppeteerGAN [10]
both employ SPADE [41] to introduce pose and texture information
into the network and guide the generation.

X2Face [61] estimates a dense flow to warp the source image to
an intermediate frontal state and then to the target pose. Monkey-
Net [48] learns a key-point detector and a dense motion predictor
to estimate the dense flow that warps the feature of the source
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image to the pose of the target. Then the generator of Monkey-
Net [48] takes the warped feature to generate the final output image.
FOMM [11] detects key points and the one-order Jacobi matrix of
each key point to achieve a more accurate motion transformation.
Work [59] extends the 2D key-point detection to 3D for boosting
the reality of the generated video. Disentanglement-based meth-
ods such as MoCoGAN [54] disentangle the input to content and
motion vectors, and portrait animation is performed by combin-
ing the content vector of the source with the motion vector of the
target. Siarohin [50] proposed a novel image animation method
that can manipulate various articulated objects. LLA [60] trains an
autoencoder to encode the relation between image warping and
latent space navigation in a self-supervised manner. StyleHeat [66]
employs a pretrained StyleGAN for face animation by warping the
intermediate features.
StyleGAN Semantic Analysis. Style-based generators show sur-
prising semantic interpretability not only in the latent𝑊 + space
but also in the feature space. Labels4Free [3] distinguishes the fore-
ground and background of the generated image easily by taking the
intermediate features of StyleGANs as input. Xu et al. [62] reveal
the potential of StyleGANs feature by transforming the concate-
nated feature to segmentation linearly supervised by only a few
semantic labels. Endo et al. [15] carry out a image-to-image trans-
fer method with the StyleGAN generator and the supervision of
pseudo labels extracted from StyleGAN features. PSP [44] proposes
a GAN-inversion method which can also generate new images con-
ditioned on segmentations and sketches. DatasetGAN [72] extends
segmentation generation based on a pretrained StyleGAN from
the face field to various data. SemanticGAN [34] proposes a dif-
ferent way to train image and segmentation generation branches
together instead of using a pretrained image generator. EditGAN
[36] displays a precise image manipulation method by optimizing
the latent code of the target while constraining the semantic label.
StyleGAN-based Image Manipulation. StyleGANs [28, 29, 27]
make great progress in unconditional image generation. Benefit-
ing from the excellent performance and disentanglement ability of
Style-generators, various applications have been developed based
on pretrained StyleGAN. Shen et al. [46] show linear interpolation
in the𝑊 + [1, 2] space can manipulate the generated image with the
help of the corresponding attribute classifier. Somemethods attempt
to search for the meaningful manipulation vector in 𝑤+ space in
an unsupervised/self-supervised manner. GANSpace [20] identify
important manipulation vectors as the principal components (PCA)
of the latent space. Plumerault et al. [43] introduce a method to find
meaningful directions by self-augmentation such as translation,
zoom or color variations. Closed-form factorization [47] between
the latent𝑊 + space and the generated image space can also be
used to find meaningful interpolatioin directions. Compared with
supervised methods, unsupervised methods need no pretrained
classifiers, which enables them to find more fantastic manipulation
vectors, especially for attributes without specific datasets to train
classifiers. However, a part of vector directions found by unsuper-
vised searching in the latent space is incorrect or meaningless, and
the meaning of the other part needs to be tagged manually.

Other methods use networks to process the latent code of Style-
GAN in order to edit the generated image. Lu et al. [37] extract the

pair of manipulation vector and attribute by a deformation directed
by classification consistency and centroid constant. IALS [19] finds
semantic directions for disentangled attributes in a step-by-step
manner to keep the instance unaffected. StyleFusion [26] is able to
extract different attributes from a set of inputs to generate harmo-
nized style code to edit multiple attributes of the generated image
directly. Yao et al. [65] employ a dedicated latent transformation
network which uses a single layer of linear transformation to com-
pute the difference value of latent code for each attribute editing.
StyleFlow [4] formulates the conditional exploration as an instance
of conditional continuous normalizing flows in the GAN latent
space conditioned by attribute attributes.

More applications such as 3D shape manipulation [52], layout
editing [63], style transfer [31], virtual try-on [33], face swapping
[38, 74, 12] and text-driving editing [42] show more ways of im-
age manipulation based on pretrained StyleGAN. MoCoGAN-HD
[53] is the first work that tries to generate videos with pretrained
StyleGAN. However, extra video datasets are needed to train the
trajectory encoder and controllable pose retargeting is still needed.

3 METHOD
Human face animation aims to transfer the pose and expression of
the target image 𝑡 to the source image 𝑠 . Employing a pretrained
style-based generator 𝐺 , our method realizes face animation by
predicting the variation Δ𝑤 in the latent space which is equivalent
to the facial action between 𝑠 and 𝑡 . The proposed D2Animator
learns to model the relation between the latent space and facial
action through a dual-distillation strategy. D2Animator consists of
two distillation modules Clustering-based Distiller (CluDistiller)
and Augmentation-based Distiller (AugDistiller). The procedure
of the CluDistiller searching the latent space for the interpolation
directions that are in control of pose and expression is illustrated
in Section 3.1. Based on CluDistiller, we present AugDistiller, an
Augmentation-based distillation method that encodes the facial
action to interpolation directions which is presented in Section 3.2.

3.1 Clustering-based Distiller
As aforementioned, StyleGANs provide a prior for face manipu-
lation in the way of latent space interpolation. Clustering-based
Distiller (CluDistiller) targets to distill the StyleGANs to find the
interpolation directions that alter the pose and expression without
affecting the identity. Specifically, CluDistiller can not only search
for the interpolation directions that are equivalent to a designated
facial part but also explore the latent space to collect a comprehen-
sive set of interpolation directions to complete diverse pose and
expression manipulations. As shown in Figure 2, CluDistiller takes
four steps, i.e. sampling, detecting, clustering and collecting to find
the interpolation directions for face animation. We explain the four
steps in detail as follows.
Sampling: In the beginning, we generate a synthetic dataset with a
pretrained StyleGAN by intensively sampling from the latent space,
i.e. sampling from the learned image distribution. We randomly
sample 𝑧 ∈ N (0, 1), and then map them into the latent space𝑊 +

[1, 2] (noted as𝑊 for short below) using the mapping network. We
store the latent codes {𝑤} and the images {I} generated by 𝐺 as
two items of the synthetic dataset.
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Figure 2: Illustration of CluDistiller framework, consisting of four steps, i.e. Sampling, Detecting, Clustering and Collecting.
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Figure 3: Face manipulation and augmentation with the in-
terpolation directions collected by CluDistiller.

Detecting: Facial landmark is an effective representation to sepa-
rate the information of facial action from the appearance. Besides,
the small data volume of detected landmarks makes it easier for
subsequent processing. Therefore, we detect the facial landmarks
of the synthesized images {I} as the representation of facial action.
In practice, we employ one of the start-of-the-art facial landmark
detectors [69] to predict 98 key points for each generated image.
Clustering: Previous methods [46] presented the classification-
based distillation methods to discover interpolation directions for
discrete attributes. However, diverse facial actions cannot be fully
separated by multiple classifiers. In order to divide the samples into
several contiguous clusters in accordance with pose and expres-
sion, we separate the synthetic dataset by clustering. Taking the 98
facial landmarks as a 196-dimensional representation of pose and
expression for each sample, we utilize Kmeans [51] to cluster these
samples. Furthermore, we can select the landmark points that are
relative to certain facial parts to distinguish them more precisely.
In addition, the number of clusters would affect the scale of dis-
covered facial actions. By selecting different facial landmark points

and setting diverse clustering numbers, we divide synthetic sam-
ples in different manners to collect various interpolation directions.
The diagram of the clustering stage (third stage) shown in Figure
2 illustrates the effect of clustering points. Clustering the dataset
according to the mouth landmark points can divide the samples
into the blue and purple clusters, and the green and orange clusters
are divided by cheek landmark points.
Collecting: Finally, we aim to collect the interpolation directions
based on the clustering results. For each cluster, we compute the
mean �̄ of the samples as the centroid. Then we calculate the
interpolation direction between each pair of centroids. Based on
the observation that only the first 8 layers of � affect the pose
and expression, we omit the last 10 layers during calculating. In
order to eliminate the insignificant interpolation directions, we use
Independent Component Analysis (ICA) [25] to choose the most
significant components when the number of clusters is over 6.

By setting different numbers of clustering and facial landmark
pints, we can collect a comprehensive set of interpolation direction
V = {�0, �1, �2, ..., ��}, which are in control of continuous facial
actions. We show examples of face manipulation using some of the
collected interpolation directions in Figure 3 (left). The image at
the center is a randomly generated source image and the others are
the manipulated results. In the first row, we show that the collected
interpolation directions can alter the head pose of the source with
large-scale motion. The two manipulated images in the second row
display that we can edit subtle expressions such as blinking (left)
and gazing (right). The last row presents the results of manipulating
expression in different ways including excitement, happiness and
surprise. It proves that CluDistiller can collect diverse interpolation
directions that correspond to different facial actions.

3.2 Augmentation-based Distiller
Augmentation-based Distiller (AugDistiller) is a distillation frame-
work that learns to model the facial actions with the variations
in the latent space. Based on the interpolation directions V =
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Figure 4: Illustration of AugDistiller framework which trains the FAN network in a self-supervised manner.

{�0, �1, �2, ..., ��} provided by CluDistiller, we first develop an aug-
mentation method to generate high-volume manipulated images
by sampling on the explored directions in a flexible manner. Then
the AugDistiller employs a facial action network (FAN) to predict
the combination of the interpolation directions from the difference
of the pose and expression between source and target landmarks.
Augmentation.The interpolation directionsV = {�0, �1, �2, ..., ��}
collected by CluDistiller can be adopted as a set of bases that con-
duct diverse manipulations. Next, we can achieve more complex
manipulations by estimating the weighted sum of these bases. How-
ever, setting too large weights may lead to artifact and facial expres-
sion distortion, while using too small weights limits the diversity
of augmentation. Our augmentation method solves this problem by
adjusting the norm of augmented variation layer-by-layer. We first
sum the interpolation directions with weights � sampled from a
uniform distributionU(−1, 1). Then, for each layer of the summed
vector, we re-norm it by restricting the euclidean distance between
the altered � and the �̄ of the latent space by a fixed threshold.
Figure 3 (right) shows the images augmented by our method. Com-
pared with the manipulation results in Figure 3 (left), the augmen-
tation method can generate images with more various poses and
expressions while remaining the quality and identity of the source.
For simplicity, we still note the augmentation as sampling from a
uniform distributionU(−1, 1) in the following sections.
Training. As shown in Figure 4, AugDistiller trains the FAN by
distilling the StyleGAN through augmentation. We employ a pre-
trained StyleGAN � and a facial landmark detector F during the
training, where neither video sequences nor real images are re-
quired. We first generate the �� and �� of source from randomly
sampled � ∈ N (0, 1). Then we alter the pose and expression of the
�� by adding a variation Δ� on the�� ,

�
���
� = �� + Δ�, (1)

such that we can input the augmented Δ� to the generator and
produce the augmented target image ����� .

Next, we detect the facial landmarks of �� and �
���
� , denoted as:

��� = F (� (�� )),
��

���
� = F ((� (����

� )) .
(2)

The input of the FAN is the concatenated heatmaps of the landmarks,
which represents the location of each landmark as a unimodal

Gaussian distribution. The FAN predicts the variation as:
Δ�̃ = ��� (��� , ��

���
� ). (3)

In order to show the distilling process, we expand Equation 3 as:
Δ�̃ = ��� (F (� (�� )), F (� (�� + � · V))),

�� = ��� (�), (4)

where � ∈ N (0, 1) and � ∈ U(−1, 1). Since we already know the
ground truth of the variation, losses on image content are not
needed anymore. We train the FAN by minimizing the difference
between the predicted Δ�̃ and the augment Δ� , denoted as L:

L = log(cosh(Δ�̃ − Δ�)) + � · | |Δ�̃ − Δ� | |2, (5)
where the hyper-parameter � is usually set as 0.1.

In the training phase, the data and augmented ground truth are
all sampled from the imagemanifold and latent space of a pretrained
StyleGAN. After training, the FAN is able to predict the variation
which is equivalent to the facial action between two images. Thus,
the trained FAN can be used to animate a source image to target by
providing the desired variation in the latent space.
Fine-tuning. We can further improve the accuracy of pose and
expression retargeting by fine-tuning the FAN on specific source
image without additional data. Given a source image �� , we first
inverse the image to the latent space as �̂� by a GAN-inversion
method [55]. Then we fix the �̂� as the source instead of sampling
randomly, with remained procedures the same as the training phase.
Inference. During inference on real images, the inversion of the
source image is also needed. For each target pose, we input the
facial landmarks of the source and target to the FAN, i.e.

Δ�̃ = ��� (F (� (�̂� )), F (� (�� )). (6)

Then we add the predicted variation Δ� back to �̂� and synthesize
the predicted image with StyleGAN:

�̃ = � (�̂� + Δ�̃). (7)

4 EXPERIMENTS
Experimental settings.We implement the experiments in three
situations including self-driving, cross-identity and sequence-driving
animation. The cross-identity experiment is performed on high-
resolution image datasets CelebA-HQ [32] and FFHQ [28]. For each
comparison, we randomly select 1000 images as the sources and
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Source Target StyleFusion [23]PSP [41]FOMM [46] Bi-layer [61] Ā2Animator
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Figure 5: Qualitative comparison pf cross-identity experiment on CelebA-HQ [32] and FFHQ [28].

Table 1: Quantitative experiments on CelebA-HQ [32] and FFHQ [28].

Methods
Cross-identity Sequence-driving

CelebA-HQ [32] FFHQ [28] CelebA-HQ [32] FFHQ [28]
FID(↓) IS(↓) NME(↓) CSIM(↑) FID(↓) IS(↓) NME(↓) CSIM(↑) FID(↓) IS(↓) NME(↓) CSIM(↑) FID(↓) IS(↓) NME(↓) CSIM(↑)

FOMM[49] 100.60 0.157 3.60 0.46 126.41 0.168 4.31 0.45 114.29 0.187 3.79 0.44 144.93 0.193 3.80 0.42
Bi-layer[70] 200.55 0.202 5.08 0.43 204.48 0.270 5.47 0.34 175.83 0.327 6.57 0.40 217.95 0.416 6.76 0.36
PSP[44] 47.70 0.063 2.34 0.28 75.25 0.113 3.70 0.22 91.27 0.135 4.42 0.25 98.31 0.147 4.41 0.16
StyleFusion[26] 53.05 0.057 4.84 0.55 69.22 0.093 5.77 0.49 83.03 0.109 5.97 0.54 93.81 0.154 5.96 0.48
D2Animator 44.62 0.054 3.60 0.57 53.99 0.085 5.05 0.58 69.26 0.096 4.71 0.54 79.27 0.114 5.52 0.56

another 1000 images as the targets. In the sequence-driving experi-
ment, we pick 100 sequences of different people from the VoxCeleb1
[39] dataset and sample 4 frames in each sequence as the targets.
The target frames are aligned to the layout of FFHQ [28]. The source
images are 50 high-resolution images from CelebA-HQ [32] and
FFHQ [28]. Due to the limited space, we display the self-driving
experimental results in the supplementary material.
Comparison Methods. We compared D2Animator with both
methods trained on real video sequences and StyleGAN-based in-
version methods. We take two popular generation-based face ani-
mation methods FOMM [49] and Bi-layer [70] for comparison. Both
of them are trained on real video sequences, whose performance is
usually restricted by the resolution and quality of training videos.
PSP [44] is the state-of-the-art inversion and conditional genera-
tion method based on StyleGAN. We use PSP [44] for animation by

reproducing the source image conditioned on the segmentation of
the target. StyleFusion [26] manipulates images through swapping
facial parts. The images animated by StyleFusion [26] usually re-
main the face and background of the source, while the pose, eye
and mouth may not be the same as the target.
Evaluation Metrics. In the experiment, we use four metrics to
quantify the reality, identity-preserving and facial action accuracy
of the animated images. We use Frechet Inception Distance (FID)
[7] and Inception Score (IS) [45] to describe the reality and quality
of the generated images. To measure the identity proximity of the
source and the animated face, we computed the cosine similarity
(CSIM) between extracted ArcFace [13] features. We evaluate the
facial action accuracy by the normalized mean error (NME) [8]
between the facial landmarks of the animated and target images.
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Source Target StyleFusion [23]PSP [41]FOMM [46] Bi-layer [61] Ā2Animator

Figure 6: Details (eye and mouth) of animated faces in cross-identity experiment on FFHQ [28] .

Table 2: Quantitative results of ablation study.

Methods NME(↓) CSIM(↑)
w/o CluDistiller 4.2022 0.5681
w/o fine-tuning 3.7514 0.5663
D2Animator 3.6027 0.5689

StyleFusion [23]

FOMM [46]

Ā2Animator

PSP [41]

FOMM [46] Bi-layer [61]

Ā2Animator

StyleFusion [23]PSP [41]

FOMM [46] Bi-layer [61]

Ā2Animator

Bi-layer [61]

PSP [41] StyleFusion [23]

Figure 7: Sequence-driving animation results on CelebA-HQ.

Source Target w/o fine-tuning fine-tuned

Figure 8: Qualitative comparison of ablation study.

4.1 Cross-identity Animation
Cross-identity animation experiment compare D2Animator with
the other four methods on CelebA-HQ [32] and FFHQ [28], respec-
tively. The qualitative comparisons of cross-identity situation are
shown in Figure 5. Compared with other methods, ours can produce
high-resolution results while keeping the identity better.

The quantitative results in Table 1 show that D2Animator im-
proves the reality of animated images by lower FID and IS scores.
D2Animator also outperforms the other methods in identity preser-
vation as shown by the CSIM score. PSP [44] achieves the best NME
score while failing to preserve the identity. Our method gains a
comparable NME score with FOMM [49], which proves the effec-
tiveness of learning facial action by distilling StyleGAN. Figure 6
displays an example animated face in detail. As shown in the red
rectangle, our method can preserve the glasses during the anima-
tion while PSP [44] and StyleFusion [26] lose the detail. FOMM [49]
and Bi-layer [70] can also generate the glasses, but the glass frames
are distorted. The blue rectangles magnify the mouth, where our
method produces the most similar teeth to the source.

4.2 Sequence-driving Experiment
The quantitative results of the sequence-driving experiment are re-
ported in Table 1. Comparedwith generation-basedmethods FOMM
[49] and Bi-layer [70], our method promotes reality and identity fi-
delity largely as shown by the FID, IS and CSIM scores. Figure 7 com-
pares the visual quality of different methods. The images animated
by D2Animator are far more realistic than the generation-based
methods FOMM [49] and Bi-layer [70]. D2Animator outperforms
inversion-based method PSP [44] in identity-preserving. Compared
with StyleFusion [26], the pose and expression of the face animated
by our method are much closer to the target.

4.3 Ablation Study
The proposed D2Animator consists of two modules, i.e. CluDistiller
and AugDistiller, and AugDistiller includes a training phase and a
fine-tuning phase. As the training of AugDistiller is indispensable
for face animation, we further show the efficiency of CluDistiller
and fine-tuning in the ablation.

Compared with former methods, the CluDistiller can discover
more various interpolation directions for face manipulation, which
also improves the controllability of face animation. To verify the
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Figure 9: Facial action interpolation between the source and the targets.
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Figure 10: Facial action disentanglement illustration.

effectiveness of our CluDistiller, we replace the interpolation di-
rections collected by CluDistiller with the directions discovered by
expression classifiers following [46]. Then we use the directions
in the same way with the D2Animator. The quantitative results
in the Table 2 show that CluDistiller can provide more various
manipulations which improves the accuracy and identity fidelity
of face animation.

Fine-tuning the FAN of AugDistiller on the given source after
training can further improve the identity fidelity and precision of
face animation. We test the effect of fine-tuning by comparing the
model trained on randomly augmented data with those fine-tuned
on specific sources. As shown in Figure 8, the models fine-tuned
on the specific sources can generate images with more similar
poses and expressions to the target. The CSIM score and NME
score reported in Table 2 also confirm the validity of fine-tuning
for identity-preserving and accurate pose-retargeting.

5 APPLICATIONS
D2Animator provides a powerful tool for various face animation
tasks such as portrait frontalization, teleconference anonymous
and video editing. Besides them, we show two novel applications
of the proposed D2Animator, i.e. facial action disentanglement and
facial action interpolation.

Facial action disentanglement. D2Animator enables us to re-
target the pose and expression of the source at different targets
respectively. We divide the interpolation directions collected by
AugDistiller into two groups, i.e. pose and expression. Then we
train AugDistiller with two groups of interpolation directions sepa-
rately. We show the disentanglement of facial action in Figure 10
by animating sources to the pose shown on the left top and the
expression provided on the left bottom.
Facial action interpolation. Our method can also be used to
complement the intermediate frames of facial animation. Since
D2Animator realize face animation by interpolating in the latent
space, our method can generate intermediate frames with more se-
mantically realistic facial actions. As shown in Figure 9, D2Animator
can generate sequences of continuous facial actions between the
source and target to smooth the animation video.

6 CONCLUSION
In this work, we propose D2Animator, a dual distillation framework
for high-resolution face animation. D2Animator takes a Clustering-
basedDistiller to collect the interpolation directions that correspond
to diverse facial actions in the latent space. Then D2Animator uses
an Augmentation-based Distiller to inverse facial actions into latent
space interpolations. By assembling the two distillers, D2Animator
learns to generate high-resolution face animation videos without
any real video sequences for training. D2Animator outperforms the
prior face animation methods in both reality and identity fidelity.
The results shown in the experiments and applications confirm the
superiority and versatility of D2Animator.
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